It’s often a good idea to construct deep learning code so that experiments can be conducted simply from the command line, allowing you to quickly iterate and record results. argparse makes this super easy by allowing configurations to be passed as command-line arguments. But sometimes you want to do the opposite. You find a repo that has a train.py file ready-to-go but you want to walk through it line-by-line in a Jupyter Notebook.

Unfortunately, argparse can get in the way here because the code is expecting an argparse object and you’re not calling it from the command line. To get around this, you’ll have to spoof argparse.

Simple Example

If you’re going to run a program in, say, VSCode, it’s already going to have the file in sys.argv, even if you don’t add any other arguments. If you want to quickly spoof argparse, you can extend sys.argv like so:

sys.argv.extend(["my_arg_1", "my_arg_2"])

In Jupyter Notebook

If you’re running it in a Jupyter Notebook, you only need to find this line:

args = parser.parse_args()

and change it to this:

args = parser.parse_args(args=[])

Full Example

For a fuller example, I’ll show how to do that using centermask2 as an example. centermask2 is an implementation of CenterMask: Real-Time Anchor-Free Instance Segmentation based on Facebook AI Research’s object detection detectron2 framework.

Let’s start by looking at the centermask2 code. If you go to the repository, you’ll see that there’s a train_net.py file. Opening it up, at the bottom we see the following:

if __name__ == "__main__":
    args = default_argument_parser().parse_args()
    print("Command Line Args:", args)
    launch(
        main,
        args.num_gpus,
        num_machines=args.num_machines,
        machine_rank=args.machine_rank,
        dist_url=args.dist_url,
        args=(args,),
    )

OK, so like other detectron2 modules, what we need to do is call launch. But we need to do it with an args.num_gpus, args.num_machines, args.machine_rank, args.dist_url, and whatever else is hidden inside args. How do we do this?

Fortunately, the solution is quite simple. All you need to do is pass your arguments in a list to sys.argv and then pass that as an argument to parser.parse_args(sys.argv). Here’s an example:

import sys
import argparse

sys.argv = ["--config-file", "/path/to/configs/Base-CenterMask-VoVNet-Modified.yaml"]

Now we can copy them parse that using detectron2’s default_argument_parse. I’ve copied it below for reference.

def default_argument_parser(epilog=None):
    """
    Create a parser with some common arguments used by detectron2 users.
    Args:
        epilog (str): epilog passed to ArgumentParser describing the usage.
    Returns:
        argparse.ArgumentParser:
    """
    parser = argparse.ArgumentParser(
        epilog=epilog
        or f"""
Examples:
Run on single machine:
    $ {sys.argv[0]} --num-gpus 8 --config-file cfg.yaml MODEL.WEIGHTS /path/to/weight.pth
Run on multiple machines:
    (machine0)$ {sys.argv[0]} --machine-rank 0 --num-machines 2 --dist-url <URL> [--other-flags]
    (machine1)$ {sys.argv[0]} --machine-rank 1 --num-machines 2 --dist-url <URL> [--other-flags]
""",
        formatter_class=argparse.RawDescriptionHelpFormatter,
    )
    parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file")
    parser.add_argument(
        "--resume",
        action="store_true",
        help="whether to attempt to resume from the checkpoint directory",
    )
    parser.add_argument("--eval-only", action="store_true", help="perform evaluation only")
    parser.add_argument("--num-gpus", type=int, default=1, help="number of gpus *per machine*")
    parser.add_argument("--num-machines", type=int, default=1, help="total number of machines")
    parser.add_argument(
        "--machine-rank", type=int, default=0, help="the rank of this machine (unique per machine)"
    )

    # PyTorch still may leave orphan processes in multi-gpu training.
    # Therefore we use a deterministic way to obtain port,
    # so that users are aware of orphan processes by seeing the port occupied.
    port = 2 ** 15 + 2 ** 14 + hash(os.getuid() if sys.platform != "win32" else 1) % 2 ** 14
    parser.add_argument(
        "--dist-url",
        default="tcp://127.0.0.1:{}".format(port),
        help="initialization URL for pytorch distributed backend. See "
        "https://pytorch.org/docs/stable/distributed.html for details.",
    )
    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )
    return parser

Before you would pass your arguments by calling default_argument_parser().parse_args() where parse_args is given no argument. Now you want to pass sys.argv to it as an argument.

args = default_argument_parser().parse_args(sys.argv)
print("Command Line Args:", args)
Command Line Args: Namespace(config_file='/orbital/base/core/projects/oidetectron2/configs/Base-CenterMask-VoVNet-Modified.yaml', dist_url='tcp://127.0.0.1:49153', eval_only=False, machine_rank=0, num_gpus=1, num_machines=1, opts=[], resume=False)

That’s all there is!